Communications in Combinatorics, Cryptography \& Computer Science

Break the symmetry in the hierarchical product of an arbitrary graph multiplied by a path or a cycle

Tayyebeh Amouzegara,
${ }^{\text {a }}$ Department of Mathematics, Quchan University of Technology, P.O.Box 94771-67335, Quchan, Iran.

Abstract

In this paper, we investigate the distinguishing number of hierarchical product of an arbitrary graph by a special graph.

Keywords: Distinguishing number, Graph automorphism, Hierarchical product of graphs.
2020 MSC: 05C15, 05C25.
(C)2021 All rights reserved.

1. Introduction

Albertson and Collins [1] introduced the distinguishing number of a graph. Let G be an undirected simple graph and let r be a positive integer. A coloring $h: V(G) \rightarrow\{1, \ldots, r\}$ of the vertices of G is said to be r-distinguishing provided no non-trivial automorphism of G preserves all of the vertex color. The distinguishing number of G, denoted by $\mathrm{D}(\mathrm{G})$, is the smallest integer r such that G has an r-distinguishing coloring. Unless otherwise noted, we apply the notation and phraseology of the book [7] of Bondy and Murty.

In 2009, Barrière, Comellas, Dalfó, and Fiol [5] introduced the hierarchical product of graphs. Several outcomes on the hierarchical product of graphs are obtained, some of which can be seen in $[3,4,6,8,9]$. Let G and H be two graphs and H have a root vertex, labeled 0 . The hierarchical product $\mathrm{G} \sqcap \mathrm{H}$ is the graph with vertex set $V(G) \times V(H)$ and any two vertices $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ of $V(G \sqcap H)$ are adjacent if either $x_{1}=x_{2}$ and $y_{1} y_{2} \in E(H)$ or $y_{1}=y_{2}=0$ and $x_{1} x_{2} \in E(G)$.

In this paper, the distinguishing number is determined for the hierarchical product of an arbitrary graph by a special graph such as a path graph or a cycle.

2. Main results

The author in [2, Lemma 2.1] has stated automorphisms of the hierarchical product of two graphs. Suppose $\mathfrak{B}(H)$ represents the set of all automorphisms of the graph H that pin the root vertex of H.

Lemma 2.1. [2, Lemma 2.1] Let G and H be two connected graphs such that $\mathrm{G} \neq \mathrm{K}_{1}$. Then

[^0]$$
|\operatorname{Aut}(\mathrm{G} \sqcap \mathrm{H})|=|\operatorname{Aut}(\mathrm{G})||\mathfrak{B}(\mathrm{H})|^{|\mathrm{V}(\mathrm{G})|} .
$$

Theorem 2.2. Let $\mathrm{G} \neq \mathrm{K}_{1}$ be a connected graph with $\mathrm{D}(\mathrm{G}) \leqslant 2$. Assume that the root vertex of the path P_{n} is the middle vertex of P_{n} where n is the odd integer. Then $\mathrm{D}\left(\mathrm{G} \sqcap \mathrm{P}_{\mathrm{n}}\right)=2$.

Proof. If $\mathrm{D}(\mathrm{G})=1$, then it is easy to see that $\mathrm{D}\left(\mathrm{G} \sqcap \mathrm{P}_{\mathrm{n}}\right)=2$, by using Lemma 2.1. We assume that $D(G) \neq 1$. If we color $G \sqcap P_{n}$ with less than 2 colors in a distinguishing coloring, then there exists a non-identity automorphism of P_{n} such as f, such that it preserves the coloring of P_{n} and f fixes the root vertex of P_{n}. We can expand f to $G \sqcap P_{n}$ such that f acts as the identity function on G and obtain a nonidentity automorphism of $G \sqcap P_{n}$ that preserves the coloring of $G \sqcap P_{n}$, which is a contradiction. Hence, $2 \leqslant D\left(G \sqcap P_{n}\right)$. It remains to show that $2 \geqslant D\left(G \sqcap P_{n}\right)$. First, we color the vertices of G in a distinguishing way with at most 2 colors, because $\mathrm{D}(\mathrm{G}) \leqslant 2$. Next, we color the vertices in every copy of P_{n} with 2 colors in a distinguishing way. In view of Lemma 2.1, this coloring is a distinguishing coloring of $G \sqcap P_{n}$; hence, $2 \geqslant \mathrm{D}\left(\mathrm{G} \sqcap \mathrm{P}_{\mathrm{n}}\right)$.

Theorem 2.3. Let $\mathrm{G} \neq \mathrm{K}_{1}$ be a connected graph such that $\mathrm{D}(\mathrm{G}) \geqslant 3$.
(1) Assume that the root vertex in P_{n} is the middle vertex of P_{n} where n is odd. Then $\mathrm{D}\left(\mathrm{G} \sqcap \mathrm{P}_{\mathrm{n}}\right) \leqslant x$, where x satisfies the following inequation:

$$
\frac{(x-1)^{2}(x-2)}{2} \lesseqgtr \mathrm{D}(\mathrm{G}) \leqslant \frac{x^{2}(x-1)}{2},
$$

(2) Assume that the root vertex in P_{n} is not the middle vertex of P_{n} where n is odd. Then $\mathrm{D}\left(\mathrm{G} \sqcap \mathrm{P}_{\mathrm{n}}\right)=$ $\lceil\sqrt[n]{D(G)}\rceil$.
(3) If n is even, then $D\left(G \sqcap P_{n}\right)=\lceil\sqrt[n]{D(G)}\rceil$.

Proof. (1) We show that if $\frac{(x-1)^{2}(x-2)}{2} \lesseqgtr \mathrm{D}(\mathrm{G}) \leqslant \frac{x^{2}(x-1)}{2}$, then $\mathrm{G} \sqcap \mathrm{P}_{\mathrm{n}}$ can be colored with at most x colors in a distinguishing way. In view of Theorem $2 \cdot 2,2 \leqslant D\left(G \sqcap P_{n}\right)$. If $x=2$, then $x=2 \leqslant D(G) \leqslant 4 / 2=2=x$ and so $x=2=\mathrm{D}(\mathrm{G})$, which is a contradiction. Thus $x \geqslant 3$. Assume that the vertex set of G will be partitioned to $D(G)$-classes, say, $[1],[2], \ldots,[D(G)]$. The vertices of the class $[i]$ are denoted by $v_{i_{1}}, \ldots, v_{i_{s_{i}}}$ for $i \in\{1, \ldots, D(G)\}$. We color the vertices in the class $[i]$ and s_{i}-copies of P_{n} to get a distinguishing vertex coloring of $\mathrm{G} \sqcap \mathrm{P}_{\mathrm{n}}$.

First, we color the vertices of G and P_{n} as follows:
Step 1. We color all vertices in the class [i], where $1 \leqslant i \leqslant \chi$, with the color i and the vertices in the s_{i} copies of P_{n} with 2 colors in a distinguishing way.

Step 2. We color all vertices in the class [i], where $x+1 \leqslant i \leqslant 2 x$, with the color $i-x$ and the vertices in the s_{i} copies of P_{n} with 2 colors in a distinguishing way.

Step 3. We color all vertices in the class $[i]$, where $2 x+1 \leqslant i \leqslant 3 x$, with the color $i-2 x$ and the vertices in the s_{i} copies of P_{n} with 2 colors in a distinguishing way.

Continuing these steps, we color all vertices in the class [i], where $\left.\binom{x}{2}-1\right) x+1 \leqslant i \leqslant\binom{ x}{2} x$ with the color $\left.i-\binom{x}{2}-1\right) x$.

Next, suppose that $P_{n}^{(i)}$ represents the copy of P_{n} related to the vertex of G that has the color i. Since all vertices in the graph P_{n} unless the root vertex can be colored distinctly with at least 2 colors in a distinguishing way, so every graph H can be colored by at least $\binom{x}{2} \times$ different cases with x colors. Therefore, for all $1 \leqslant i \leqslant x$, there exist at least $\binom{x}{2} x$ graphs $P_{n}^{(i)}$ in $G \sqcap P_{n}$ such that those are colored distinctly in a distinguishing way. Hence, the graphs $P_{n}^{(i)}$, for all $1 \leqslant i \leqslant x$, do not image to each other with some non-trivial automorphism. This way makes a distinguishing coloring for $G \sqcap P_{n}$ with x colors. Hence, $\mathrm{D}\left(\mathrm{G} \sqcap \mathrm{P}_{\mathrm{n}}\right) \leqslant \mathrm{x}$.
(2) and (3). By [2, Theorem 3.10].

Theorem 2.4. Let $\mathrm{G} \neq \mathrm{K}_{1}$ be a connected graph such that $\mathrm{D}(\mathrm{G}) \geqslant 3$. Then for $\mathrm{n} \geqslant 6, \mathrm{D}\left(\mathrm{G} \sqcap \mathrm{C}_{n}\right) \leqslant x$, where x satisfies the following inequation:

$$
\frac{(x-1)^{2}(x-2)}{2} \lesseqgtr \mathrm{D}(\mathrm{G}) \leqslant \frac{x^{2}(x-1)}{2},
$$

Proof. The proof is similar to the Theorem 2.3.
Theorem 2.5. Let $\mathrm{G} \neq \mathrm{K}_{1}$ be a connected graph with $\mathrm{D}(\mathrm{G}) \leqslant 2$ and P be the Petersen graph. Then $\mathrm{D}(\mathrm{G} \sqcap \mathrm{P})=2$.
Proof. We color the vertices of G in a distinguishing way with at most 2 colors. Now, we color the vertices in every copy of P with 2 colors in a distinguishing way. In view of Lemma 2.1, this coloring is a distinguishing coloring of $G \sqcap P$; hence, $2 \geqslant \mathrm{D}(\mathrm{G} \sqcap P)$. Now, we show that $2 \leqslant \mathrm{D}(\mathrm{G} \sqcap P)$. If we color $G \sqcap P$ with less than 2 colors in a distinguishing coloring, then there exists a non-identity automorphism of P such as f, such that it preserves the coloring of P and f fixes the root vertex of P. We can expand f to $G \sqcap P$ such that f acts as the identity function on G and obtain a non-identity automorphism of $G \sqcap P$ that preserves the coloring of $G \sqcap P$, which is a contradiction. Hence, $2 \leqslant D(G \sqcap P)$.

Acknowledgment

This research was supported by a grant from Quchan University of Technology. The author would like to thank Quchan University of Technology for the financial support during the preparation of this paper.

References

[1] M. O. Albertson and K. L. Collins, Symmetry breaking in graphs, Electron. J. Combin., 3 (1996), no. 1, Research Paper 18, approx. 17 pp. 1
[2] T. Amouzegar, Distinguishing number of hierarchical products of graphs, Bull. Sci. math., 168 (2021), 102975, https:/ /doi.org/10.1016/j.bulsci.2021.102975. 2, 2.1, 2
[3] M. Arezoomand and B. Taeri, Applications of generalized hierarchical product of graphs in computing the szeged index of chemical graphs, MATCH Commun. Math. Comput. Chem., 64 (2010) 591-602. 1
[4] S. E. Andersona, Y. Guob, A. Tenney and K. A. Wash, Prime factorization and domination in the hierarchical product of graphs, Discuss. Math. Graph Theory, 37 (2017) 873-890, doi:10.7151/dmgt.1952. 1
[5] L. Barrière, F. Comellas, C. Dalfó and M. A. Fiol, The hierarchical product of graphs, Discrete Appl. Math., 157 (2009), 36-48, doi:10.1016/j.dam.2008.04.018. 1
[6] L. Barrière, C. Dalfó, M. A. Fiol and M. Mitjana, The generalized hierarchical product of graphs, Discrete Math., 309 (2009), 3871-3881. doi:10.1016/j.disc.2008.10.028. 1
[7] J. A. Bondy, U. S. R. Murty, Graph Theory, Springer, 2008, GTM 244. 1
[8] M. Eliasi, A. Iranmanesh, Hosoya polynomial of hierarchical product of graphs, MATCH Commun. Math. Comput. Chem., 69(1) (2013), 111-119. 1
[9] P. S. Skardal and K. Wash, Spectral properties of the hierarchical product of graphs, Phys. Rev. E 94, 052311 (2016), doi: 10.1103/PhysRevE.94.052311. 1

[^0]: Email address: t.amoozegar@yahoo.com; t.amouzgar@qiet.ac.ir (Tayyebeh Amouzegar)
 Received: November, 1, 2021 Revised: November, 15, 2021 Accepted: November, 20, 2021

